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Abstract—This paper presents the first network configuration
verifier that provides fast all-pair reachability analysis of incre-
mental configuration changes for network overlay data center
networks (DCNs). Network overlay DCNs leverage distributed
routing protocol on edge leaf switches to disseminate overlay
routes and establish overlay tunnels. In addition, network overlay
DCNs use access control lists, microsegmentation policy, policy-
based routing and firewall policy to control east-west and north-
south traffic. Although some incremental verification approaches
have been proposed, they either do not support certain forward-
ing features of the network, or are not efficient. Our configuration
verifier addresses these issues through the following components:
1) a port predicate based forwarding model that is general to
support all features; 2) fine-grained association technique to index
possibly affected reachable pairs by changed interfaces in the
original network; and 3) required waypoint path computation
that finds all reachable pairs related to changed interfaces
in the new network. Based on these components, our verifier
presents two incremental verification algorithms that are specially
designed for different service update cases. Experiment results
show that our incremental verification algorithms are accurate
and fast. For all-pair reachability, our verifier performs change-
impact analysis within 15s for networks with 200 leafs (4000
subnets and 16 million pairs), outperforming existing approaches
by up to 10x.

Index Terms—network verification, configuration verification,
incremental verification, data center networks

I. INTRODUCTION

MANAGEMENT of Data Center Networks (DCNs) is
difficult due to its support of multi-tenant cloud. The

network overlay solution [1], [2] adopted by major device
vendors makes the management more complicated. Different
from the centralized software-defined network (SDN) solution
that controller makes forwarding decisions, network overlay
solution leverages distributed Border Gateway Protocol (BGP)
on edge leaf switches to advertise overlay routes and estab-
lish virtual extensible local area network (VXLAN) tunnels
[3]. In addition, various policies such as access control lists
(ACLs), microsegmentation (MCS) and policy-based routing
are enforced by switches inside the network to control east-
west and north-south traffic.

In this paper, we consider the incremental configuration
verification problem in network overlay DCNs. When new
services are to be deployed, incremental configurations of
network switches are generated, and are to be verified so
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that they do not violate intended reachability requirements.
In particular, we focus on the all-pair reachability change
impact analysis: at the beginning, all endpoint interfaces that
generate overlay traffic have a mutual reachability relationship;
after incremental configurations are generated (but before
deployment), the verifier returns changed all-pair reachability
caused by incremental configurations so that users can check
whether the impact follows their intent.

Given that overlay services are frequently deployed, the
computation overhead of change impact analysis should be
low. In addition, the pre-deployment analysis should be as
fast as possible compared with post-deployment offline verifi-
cation. Re-computing all pairs’ reachability [4] is not scalable
given the potential large amount of endpoint interfaces in real
networks. Therefore, it is more practical to find pairs whose
reachability are affected, and re-compute these pairs only.
Although some incremental verification approaches have been
proposed, they have limitations for network overlay DCNs.

Existing EC-based incremental approaches are not gen-
eral for network overlay DCNs. Equivalence class (EC) ap-
proaches [5]–[10] pre-compute the global forwarding equiv-
alence classes that have the same forwarding behavior in all
devices, and represent the edge of network graph model as EC
labels. Then they can compute incremental ECs when facing
configuration changes, and have demonstrated a fast incremen-
tal verification performance in IP or ACL forwarding scenar-
ios. However, the forwarding features in commercial network
overlay DCNs are quite complicate: there is a long-chained
forwarding pipeline for overlay packets, and the pipeline goes
beyond sequential. Single-modular abstraction for a device is
not adequate. Moreover, some packet forwarding features are
closely related to devices’ local behavior (e.g., firewall security
policy), and their forwarding constraints can not be represented
by the traditional packet header. Even if the constraints can
be represented by an extended EC model, extensive packet
rewrites (e.g., tunnels) and distributed processing (e.g., mi-
crosegmentation) can make global EC computation inefficient.
A general network model without computing ECs is preferable
when handling complex forwarding features in commercial
network overlay DCNs.

Existing indexing-based incremental approaches are not
efficient for network overlay DCNs. Indexing approaches are
an alternative way to compute differential reachability, and
do not rely on the EC model. They first compute all-pair
reachability in the forwarding graph model, and associate each
node with reachability information such as arrived flows or
pairs (i.e., establish reachability index) when initializing the
all-pair reachability matrix. When nodes that change forward-
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ing behavior are identified, simply looking up the table can
find possibly affected flows or pairs, and re-computation of
these flows or pairs can find reachability changes. However,
the existing approaches [11], [12] either use a large amount
of memory due to the per-node flow storage, or invoke many
inefficient computation due to inaccurate association and per-
pair re-computation.

To overcome these limitations, this paper presents a new
real-time configuration verifier, Port Predicate Verifier (PPV).
PPV adopts the modular design principle that decouples the
forwarding pipeline into blocks, and builds a port (interface)
forwarding graph model that connects basic blocks and is
expressive for all kinds of forwarding behavior in network
overlay DCNs. Moreover, PPV defines an extended symbolic
packet header that includes some local fields to model device-
specific forwarding features. These fields are meaningful only
inside a device, and are cleaned up before leaving the device.
Then PPV defines the forwarding constraints as predicate on
the symbolic packet header, and performs reachability analysis
on the raw predicate presentation instead of EC labels.

Furthermore, based on the port predicate model, our verifier
first presents an improved depth-first search (DFS) algorithm
to compute reachability of one endpoint to all endpoints in
one round, avoiding expensive per-pair computation. Then
PPV presents two novel incremental verification algorithms to
compute differential reachability based on the DFS algorithm.
The first algorithm leverages a reachability table that associates
interfaces (more accurate than [12]) with reachable pairs in the
old graph, and augments the indexing approach with a required
waypoint path computation procedure to find all reachable
pairs related to the changed interfaces in the new graph. In
particular, the procedure treats these changed interfaces as
required waypoints, calls the DFS algorithm in the forward
direction and backward direction to find reachability paths,
and combines them to find all reachable pairs. The first
algorithm performs well for small-scale networks and for some
service update cases. To further improve the performance
and avoid storing reachability information, PPV presents a
new algorithm that does not rely on the reachability table,
and uses two rounds of required waypoint path computation
(with smaller header space) to find reachability changes. The
second algorithm performs better for some cases that changed
interfaces are not at edge and for large-scale networks.

Overall, our contributions are summarized as follows:
1) To the best of our knowledge, we are the first to design

and demonstrate incremental configuration verifier for
network overlay DCNs.

2) We present a general port predicate model, and design
two incremental verification algorithms that use a new
indexing method and a required waypoint path computa-
tion method to find all-pair reachability changes.

3) We show that our verifier analyzes reachability changes
within 15s for studied service update cases, outperform-
ing existing approaches by 0.8x-10x.

The rest of this paper is organized as follows. Section
II introduces the background and motivations. Section III
overviews our designs and the architecture of our verifier. Sec-
tion IV and Section V present the design details. Experimental
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Fig. 1: A typical network overlay DCN system

results are given in Section VI. Section VII summarizes related
works. Section VIII concludes this paper.

II. BACKGROUND AND MOTIVATIONS

A. Network Overlay DCN

System Overview: Figure 1 shows a typical network over-
lay DCN system, including a network controller and a DCN
fabric. A network overlay DCN fabric is actually a data center
(similar to an Availability Zone for the public cloud), and is
made up with network switches and firewalls. It usually adopts
the two-layer Spine-Leaf architecture: the physical servers and
their hosting virtual machines (VMs) connect with top-of-
rack (ToR) server leaf switches, and each server leaf connects
with two spine switches. Network traffic are evenly distributed
over the two links, and the traffic can be redirected to the
other link if one link fails. A DCN fabric also owns two
special leaf switches — border leafs. On one hand, border leafs
serve as edge switches that connect with the external network
(e.g., provider edge routers). On the other hand, firewalls are
attached to the border leafs, and policies are configured on
firewalls to filter east-west and north-south traffic. We focus
on verifying the overlay service1 in the DCN fabric, where all
controls are enforced in the fabric devices (e.g., switches).

In this system, network administrators usually use a network
controller (e.g., Cisco APIC [1] or Huawei Agile-Controller
[2]) to manage the fabric. The network controller provides a
portal to deploy services, where users can specify network
parameters and network policy. It then converts the inputs
to configurations applied to network devices. The generated
configurations include protocol parameters and policy pa-
rameters, which are to be elaborated below. Note that these
configurations are not the real forwarding plane as in SDN, and
network switches still need to leverage distributed protocols to
generate the forwarding plane.

VxLAN: VxLAN is the de facto overlay protocol to support
network virtualization in DCN [3]. VxLAN uses a MAC-in-
UDP packet encapsulation mode, where the original overlay
Layer 2 frame is encapsulated into an outer UDP-IP header.
There is also a VxLAN header that contains some overlay
network information such as virtual network identifier (VNI)
and group ID.

Virtual tunnel end points (VTEPs) are responsible for encap-
sulation and decapsulation of the outer header and the VxLAN
header. Different from the host overlay DCNs, where VTEPs

1 More accurately, we are verifying the implementation of virtual private
clouds within data center networks, including both VxLAN tunnel forwarding
(underlay) and the service traffic forwarding over the tunnels (overlay).
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are created on virtual switches (vSwitch) in the server, the
server leafs and border leafs hold the VTEP interfaces (called
network virtual interface, NVE) in network overlay DCNs. To
enable VxLAN tunnels, the underlay transport network needs
to be configured first: IGP protocols (e.g., OSPF, BGP) are
usually used to ensure mutual reachability of NVEs in ToR
leafs and border leafs. BGP Ethernet Virtual Private Network
(EVPN) [13] is usually used as the control plane to distribute
overlay routes.

VRF: In overlay DCNs, virtual private cloud (VPC) is the
basic resource for tenants. A tenant can own several VPCs,
and can configure VPC peering to enable inter-VPC commu-
nication. A VPC is usually implemented using virtual routing
and forwarding (VRF). A VRF can be treated as a virtual
router that owns private subnets and a private forwarding
information base (FIB). The VNI field in VxLAN header
is used to isolate traffic belonging to different VPCs. Each
VPC uses a unique VNI to label its traffic. When receiving
a VxLAN packet, destination VTEP parses the VNI value,
and delivers the packet to the corresponding VRF. VNIs are
advertised in the overlay routes.

The VxLAN tunnel also allows inter-VPC traffic if source
VTEP pads the destination VRF’s VNI in the VxLAN packet.
However, in practice, to further control the inter-VPC ac-
cessible subnets, the inter-VPC access can be configured in
border leafs by cross-VRF static routes, and these static routes
are imported into BGP EVPN. In this way, inter-VPC traffic
are exchanged at border leafs, and go through two VxLAN
tunnels. For example, 𝑉𝑀𝐴 is attached to server leaf 𝐿1, and
𝑉𝑀𝐵 is attached to server leaf 𝐿2. They belong to different
VPCs. We can configure two cross-VRF static routes in border
leaf 𝐵1 to let them communicate. In this way, traffic from
𝑉𝑀𝐴 to 𝑉𝑀𝐵 follow the path of 𝐿1, 𝐵1 and 𝐿2. The traffic
go through two VxLAN tunnels (i.e., 𝐿1 to 𝐵1, and 𝐵1 to 𝐿2)
with corresponding VNI labels that are rewritten in 𝐵1.

Firewall: Firewalls are mainly used to examine all north-
south traffic, protecting a data center from attack from the out-
side Internet. Firewalls also have independent VRFs (aka. vsys)
to simulate virtual firewall instances for tenants. Firewalls
provide network address translation (NAT) function to north-
south traffic. A special packet forwarding feature that firewall
NAT introduces is the bidirectional NAT, where a bidirectional
NAT policy is composed of a source NAT and a destination
NAT. The processing in bidirectional NAT is stateful: a packet
matches destination NAT will definitely apply the correspond-
ing source NAT when it is to be forwarded out of the device.
Moreover, different from switches, firewalls leverage security
zones that group interfaces to classify security areas, and
policy rules are defined on zones.

Policy-Based Routing: Policy-based routing (PBR) is a
mechanism that forwards packets based on defined policy.
In particular, PBR is to first define a group of packets (e.g.,
through ACLs), and enforce network devices to forward the
defined traffic according to the defined actions (e.g., permit,
deny, redirect), bypassing the original data plane forwarding.
Moreover, the redirect action is to look up the FIB to find the
final outgoing interface for the defined traffic. It is commonly
used with firewalls to control east-west traffic in network

overlay DCNs, where some east-west traffic are redirected to
firewalls, and access policy on firewalls further control the
redirected traffic.

Microsegmentation: Another notable feature in network
overlay DCNs is the use of microsegmentation (MCS). MCS is
an alternate way to control the east-west traffic, which does not
forward the traffic to firewalls, and relies on local policies to
perform access control. In particular, MCS defines groups, that
are essentially a set of VMs defined on switches locally, and
group-based policies [14] such as permit or deny. Compared
with conventional ACLs that define policies on individual IPs,
MCS is more scalable since a group aggregate IPs that have
the same policy.

For network overlay DCNs, MCS is implemented by source
and destination VTEPs in a distributed manner: the source
VTEP first computes a group ID by source IPs, and puts it into
the VxLAN header; when the destination VTEP decapsulates
the VxLAN packet to get source group ID, it computes the
destination group ID by destination IPs, and processes the
packet according to the specified group policies on group IDs.

Examples: To help understand these new forwarding fea-
tures in network overlay DCNs, we provide some examples in
Appendix A, including supported FIB rules, firewall NAT/se-
curity policies and PBR/MCS configurations.

B. Challenges

Existing approaches that support real-time incremental ver-
ification can be classified into two categories: EC approaches
[5]–[10], [15] and indexing approaches [11], [12]. However,
they do not completely address new challenges introduced by
network overlay DCNs.

(a) Model Expressiveness: Existing EC approaches [5]–
[9] only consider traditional FIB or ACL forwarding scenarios,
and do not support tunnels essential in network overlay DCNs,
where overlay packets are encapsulated/de-encapsulated over
the VxLAN tunnel. APT [15] supports tunnels (and general
packet rewrite) by introducing auxiliary flag variables and
using predicate existential quantification, and adopts a device-
based forwarding model where a device is equipped with
several interfaces. However, the single-module abstraction for
a device is designed for traditional FIB or ACL forwarding,
where the forwarding pipeline is simple (FIB plus ACL) and
sequential. In commercial network overlay DCNs, the process-
ing can be quite complicated, even within a single interface.
The forwarding pipeline may be a long chain, where a packet
may go through several steps (e.g., PBR, MCS, overlay encap
and de-encap, cross-VRF routing) before forwarded out of an
interface, and the pipeline may be conditional branch (e.g.,
PBR bypasses the FIB forwarding).

APKeep [10]2 overcomes the model expressiveness problem
of devices’ pipelined forwarding behavior via a modular
network model. In particular, the model splits the pipeline into
several elements, and each element represents a processing
step. Elements have virtual ports, and they are connected via
edges with packet header space constraints. The header space

2 APKeep does not support tunnels, but it can be extended to support
tunnels as in APT [15].
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is defined over a symbolic packet header that denotes fields
in a real packet. ECs are then computed based on all edges’
packet header space.

However, EC approaches rely on a fundamental assumption
that all forwarding constraints can be represented by the
symbolic packet header, and the representation is globally
applicable for EC computation. In commercial network over-
lay DCNs, especially in firewalls, some processing is locally
meaningful. For example, the constraints of zone security
policy are not only specified on IPs but also on zones and
interfaces belonging to the zone. Another example is the
packet forwarding times constraint within the firewall: a packet
is not allowed to travel over two VRFs [16]. Both constraints
are hard to represent using the conventional packet header.

(b) Model Efficiency: Even though there may be a model to
tackle the model expressiveness problem for EC approaches,
they may encounter an efficiency problem. The device splitting
method (i.e., the modular design) may lead to excessive
elements and edges (note that each step corresponds to a new
element, and the NAT element defines a new edge for each
NAT rule [10].). It may impact the EC computation perfor-
mance (for both full or incremental). In addition, supporting
tunnels in network overlay DCNs involves with intensive
packet rewrites, and APT [15] has shown that the number of
packet rewrite has a strong impact on the performance.

Another drawback is that the EC computation framework
may over-compute the number of ECs for the distributed
processing in network overlay DCNs (e.g., distributed group
ID definitions in MCS). For example, switch L1 defines
192.168.1.0/24 in vpn1 with source group ID 1, and switch
L2 defines 192.168.2.0/24 in vpn2 with destination group ID
2. They belong to different VRFs, and may not be reachable
if there are no cross-VRF routes. However, current EC ap-
proaches will generate three ECs by intersecting their header
space, although they are not reachable.

(c) Algorithm Efficiency: Indexing approaches [11], [12]
are explored to support incremental verification. The key idea
is to record some information (e.g., arrived flows or pairs)
on each interface, extract the stored information by network
changes, and perform incremental computation.

NetPlumber [11] is the first paper to use such technique. In
particular, each rule node in the graph model stores all arrived
flows. If a rule changes in the new graph, fetching stored flows
of the rule node and computating from the changed point
can find reachability changes. However, NetPlumber suffers
from extensive memory usage due to its rule-based model,
and performs badly for large-scale networks [10].

TenantGuard [12] is the state-of-the-art indexing approach
to support incremental verification. For 𝑁 endpoint interfaces,
it computes the reachability of 𝑁2 pairs, and associates each
device with reachable or unreachable pairs that have visited
the device. For devices that have delta changes, TenantGuard
extracts the potentially changed pairs indexed from the table,
re-computes these pairs’ reachability results and compares
them with the original reachability results to identify changes.
However, the per-pair computation of the all-pair reachability
matrix is quite inefficient, since 𝑁 endpoints lead to 𝑁2 pairs.
In addition, the device-level association is coarse-grained,
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Fig. 2: An example of our port predicate graph model

which may lead to unnecessary re-computations. For example,
the border leafs may carry many inter-VPC traffic. If a
change only affects one inter-VPC pair, due to device-level
association, all pairs that visit border leafs are re-computed.

III. DESIGN OVERVIEW

A. Port Predicate Model

To tackle challenge (a), we follow the modular network
model design as in [10] that abstracts each processing step
as a block, and build a port predicate graph model that can
accommodate all kinds of forwarding behavior in network
overlay DCNs. In particular, we follow the device’s forward-
ing behavior that interfaces are the basic blocks for packet
forwarding, and define interfaces (ports) as graph nodes. A
directional edge connects two interfaces that can forward
packets from one to the other. We also introduce some virtual
ports that represent middle states of the packet processing.
Moreover, each edge is associated with a header space that
represents the forwarding constraint, and the header space is
represented by a predicate on a symbolic packet.

Figure 2 shows an example of our model. In this exam-
ple, layer-2 overlay interfaces (i.e.., bridge-domain interfaces,
BDIFs) are endpoints. The left side shows a simplified device
model. BDIFs first connect with corresponding layer-3 overlay
interfaces (i.e., virtual BDIFs, VBDIFs). Inside the VBDIF
interface, packets may be dropped by configured ACLs, or
forwarded according to the FIB in the VRF that the VBDIF
interface belongs to (e.g., VPN1). Note that, the outbound
interfaces can be NVE (e.g., NVE1) or local interfaces (e.g.,
VBDIF2). If former, it means the packet will enter another
VxLAN tunnel: the packet will be first encapsulated, and then
enter the default VRF (i.e., DEF) to find the outgoing interface
(e.g., physical interface GE1).

The right side shows the network model composed of device
models and physical topology. In particular, it shows the
complete path of a cross-VRF overlay packet from BDIF1 to
BDIF3. The packet starts from BDIF1 in server leaf L1, and
then enters associated VBDIF1. After checking the VPN1’s
FIB, it matches the VxLAN route to server leaf L2. L1’s NVE
adds outer IP header and VxLAN header (with VNI VPN1),
and forwards it to spine S1. Following underlay routes in FIBs,
it can reach server leaf L2 and is de-encapsulated by L2’s
NVE. By checking the packet’s VNI, it enters the VPN1 FIB,
and gets forwarded to VPN2. The match route in VPN2 is
another VxLAN tunnel. Following similar processing, it finally
arrives L3, and gets forwarded to the outbound interfaces
VBDIF3 and BDIF3 according to the new VNI value (i.e.,
VPN2) inside the packet.
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To avoid computing excessive ECs (i.e., challenge (b)) and
handle the local forwarding constraint representation problem,
we choose not to compute ECs, and use raw header space
for reachability computation. In particular, we introduce some
new fields in the symbolic packet header to represent local
processing: these fields are useful only inside a device, and are
cleaned up just before packets leave the device. For example,
to address the zone security policy problem mentioned in
Section II-B, we add a new field in the symbolic packet header
to denote zones. When a packet enters an interface, the field
is rewritten to the zone number that the interface belongs to.
After the packet is to be forwarded out of an interface, the
destination zone number is extracted, and zone security policy
applies. Moreover, if the packet is not dropped, the field is
erased before it is forwarded to the next device. Note that
locally unique is enough for the number, and there is no need
for global uniqueness. Similarly, we can add a counting field
to represent the vsys forwarding times.

B. Algorithms for Differential Reachability

To support incremental all-pair reachability computation
without EC model, we follow the indexing method to compute
incremental all-pair reachability, and put forth some new
designs to tackle challenge (c).

As discussed in Section II-B, existing approach [12] needs
to compute 𝑁2 rounds to find all-pair reachability and establish
a reachability table that associates visited devices with reach-
able or unreachable pairs. If a changed device is identified,
associated pairs are indexed, and their reachability is re-
computed one by one. The per-pair computation is expensive
but is necessary since unreachable pairs need to be associated
to trigger re-computation. Otherwise, if the reachability table
only records reachable pairs, we may miss some pairs that not
reachable originally but become reachable after changes.

To avoid expensive per-pair computation, we first present
a general reachability computation algorithm with improved
performance to find reachable pairs only and establish a
reachability table that associates visited interfaces with them.
In particular, we treat all endpoints as destination endpoints
in each round, and hence only need to invokes 𝑁 rounds to
find initial all-pair reachability. Experiment results also show
superior performance due to the aggregate computation (see
Section V-A). Then we augment the general reachability algo-
rithm with a new mechanism named required waypoint path
computation to find all reachable pairs related to the changed
interfaces in the new graph. In particular, we treat changed
interfaces as required waypoints, call the general reachability
algorithm in the forward direction and backward direction to
find reachability paths, and combine them to find all reachable
pairs that visit the changed interfaces. Then we look up the
all-pair reachability table to find the original reachable pairs,
and compare them to find changed reachability.

Another new design avoids computing the all-pair reachabil-
ity matrix and maintaining the reachability table, and further
improves the performance of incremental computation in some
cases. The above algorithm is not efficient when the waypoint
path computation finds large number of paths (and pairs) in
the new network. It can happen if the changed interfaces

are critical interfaces in the network (e.g., NVE interface in
border leafs). The inefficiency roots in the complete header
space used during the required waypoint path computation. In
fact, those header space that are the same between the new
network and the original network do not cause reachability
changes. Therefore, we present a new algorithm that first
computes differential header space of the interface in the
new and old graphs, and then issues two required waypoint
path computations in the two graphs to find reachable pairs.
Then, we compare their results to get reachability changes.
Experiment results show that this algorithm is especially useful
for large-scale networks (see Section VI-C).

Figure 2 also shows an example on how to compute
differential reachability. Assume that BDIF1 could not reach
BDIF3 originally, and we add a cross-VRF static route in VRF
VPN1 of L2 to enable their reachability. Then VPN1 node is
the changed interface in our graph (with FIB changes). For
the first incremental algorithm, it issues the required waypoint
path computation, and finds a reachable path from BDIF1 to
BDIF3 (the solid line denotes the backward path, and the
dashed path denotes the forward path). Since the original all-
pair reachability table does not associate VPN1 with any pairs,
(BDIF1, BDIF3) is the added reachability. For the second
incremental algorithm, the differential header space of the old
graph is ZERO, and that of the new graph is BDIF2 subnets.
Then the reachability path in the old graph is null, and that of
the new graph is (BDIF1, BDIF3). We can also get the added
reachability (BDIF1, BDIF3).

C. Architecture

Equipped with the aforementioned designs, we build PPV,
a network configuration verifier. PPV is a component of the
network controller. The network controller collects complete
network device configurations (in CLI format), and generate
incremental configurations (in YANG XML format) for service
updates. PPV is mainly used for pre-deployment verification:
before incremental configurations are deployed, the zero-input
intent verification that returns all-pair reachability changes, or
the standard intent verification that returns all possible paths
of provided endpoints can be performed.

Figure 3 shows the overall flowcharts of our configuration
verifier. For CLI complete configurations, it first parses them,
and then converts them into network object models. Then, PPV
simulates the control-plane routing protocols, and generates
a converged data plane (i.e., FIB) for reachability analysis.
The port predicate graph model is built using configurations
and a FIB (Section IV). Based on the graph model, PPV can
compute the initial all-pair reachability matrix and establish
the reachability table (Section V-A). For YANG incremental
configuration changes, PPV merges the changed objects, and
updates existing network models. Then it simulates the control
plane again to get the latest FIB. By comparing configurations
and FIBs, delta interfaces that have policy or forwarding
changes can be found). Plus the original all-pair reachabil-
ity matrix and the reachability table, our verifier can find
the reachability changes, and update the all-pair reachability
matrix (Sections V-B and V-C).
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IV. MODEL DESIGN

A. Forwarding Graph Model

Inspired by the actual forwarding behavior in network
devices, we use interfaces as the basic blocks to build the
forwarding graph. An interface (or called port) is a node in
the graph. For example, layer-2 BDIFs and layer-3 VBDIFs
are nodes. Physical interfaces that connect network devices
(e.g., Gigabit Ethernet interfaces) are also nodes. Depending
on the forwarding states, a port may be further split into several
nodes. For example, deny ACLs configured on an interface
can lead to an interface ACL deny state, and we create a new
node to denote it in the interface. Moreover, there may be
some special nodes such as a VRF node that represents the
forwarding state in the VRF, a NoRoute node that means no
match routes in FIBs, and a NullRoute node that means the
null0 interface match.

Edges connect nodes that have potential forwarding relation-
ship. They can represent associations of BDIFs and VBDIFs.
They can also represent the forwarding relationship by FIBs:
packets enter an inbound interface, and are forwarded to
outbound interfaces according to their VRF’s FIBs. Moreover,
edges also connect two interfaces that are in the physical
topology. Each edge carries a packet header space, which are
the allowed packets that the edge can forward. For example,
the edge from 𝐿1’s VBDIF1 to NVE only allows packets that
match the VxLAN routes in VRF1’s FIB. Since there may be
several match rules, the edge constraint is essentially a space
that combines these rules. We refer to the header space as edge
constraint.

Furthermore, we develop a framework to let each edge
compose constraints. In particular, the edge constraint is
designed to be a general statement (i.e., an abstract object
in our implementation) that represent the overall constrainted
header space. It accepts an input header space and outputs the
processed header space. The format of the statement can be
a simple object, a list of objects or if-then-else objects. For
example, for simple FIB forwarding without ACL definition,
the statement is just a concrete object that represents the
packets that the associated interface can forward. For ACL
plus FIB forwarding, the statement is two objects where the
first object denotes the allowed header space of the ACL, and
the second object is the allowed forwarding header space. For
conditional processing (e.g., multiple NAT address groups that
are transformed to different range of IPs), the statement allows
us to define conditions (i.e., address group) and corresponding
statements (i.e., transformed IPs). In this way, when a packet
header space enters the edge, it follows the if-then-else pro-
cess, and generates two new header space. In the end, the final

SrcVtepIP DstVtepIP ProtocolDstPortSrcIp SrcPortDstIpGroupIDVNI

32bits 32bits 24bits 16bits 32bits 32bits 16bits 16bits 8bits

Reserved

16bits

Fig. 4: The symbolic packet used in our model

header space is the union of the two header space belonging to
the two branches. To provide more flexibility, our framework
also supports recursive definition (i.e., the statement can be
another if-then-else statement).

B. Header Space Model

The next issue is how to represent header space in the
graph model. The representation is crucial to the efficiency
of a network verifier, since computations are just operations
(e.g., AND, OR, DIFF) on the header space. Early works
[11], [17] use tenary bit vector (TBV) to represent header
space, and use lazy evaluation to improve the computation
efficiency. Latter works [9], [10], [15] introduce logic predicate
(Boolean expression) as the representation, and have shown
better performance than the TBV computation.

We also use logical predicate to encode the packet header
space. In particular, we first define a symbolic packet (Figure
4) that contains all reachability-relevant fields in the header.
Since there is at most one tunnel in our scenario, we only
model one encapsulation layer. For VxLAN packets, we add
an additional IP field and a VxLAN header field, and for non-
VxLAN packets, we only use the inner IP fields. In this way,
tunnel encapsulation and de-encapsulation can be regarded as
a kind of packet rewrites: encapsulation is just rewriting values
of the outer header, and de-encapsulation is just erasing values
of the outer header. In addition, we define a reserved field with
16 bits to represent some local variables discussed in Section
III-A, including 2-bit zone index number (there are at most
four kinds of zones), 2-bit packet forwarding count (there are
at most two times).

Each bit in the symbolic packet has a corresponding variable
𝑥𝑖 . 𝑥𝑖 means the bit is one (𝑡𝑟𝑢𝑒), 𝑥𝑖 means the bit is zero
( 𝑓 𝑎𝑙𝑠𝑒), and non-existence of 𝑥𝑖 means the bit is either one
or zero. Non-existence of 𝑥𝑖 can also mean the field does
not exist. Then, each FIB (ACL) rule can be converted into
a Boolean formula in terms of 𝑥𝑖 , 𝑖 ∈ [0, 𝑙𝑒𝑛), where 𝑙𝑒𝑛

is the length of the packet. Furthermore, according to the
FIB longest-prefix match and the ACL first match principles,
the header space that each rule represents can be computed
by applying the DIFF operation on these Boolean formulas.
We use Binary Decision Diagram (BDD) [18], an efficient
data structure that enables fast logic operations of Boolean
formulas.

The predicate model is flexible, and it can support network
overlay DCNs. As we elaborated in Section IV-A, each edge
represents an action. Therefore, we only need to consider how
to represent different actions on predicate:

Normal Forwarding: For the FIB forwarding and ACL
forwarding, we need to aggregate several packet header space.
For example, several FIB rules may point to the same outbound
interface. The final header space should be the union of each
rule’s header space. Moreover, an interface can be configured
with multiple ACLs (each ACL has several permit or deny
rules), and these ACLs can be applied in the AND or OR
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fashion. Then, the final header space is the intersection or
union of each ACL’s header space. It is easy to aggregate
them in the predicate model using conjunction or disjunction
of predicate.

Encapsulation and De-encapsulation: Overlay packet
encapsulation and de-encapsulation are implemented using
packet rewrite, and packet rewrite can be implemented using
the existential quantification and conjunction on predicate as
in [15]. The whole process can also be called erase-and-set.

Let 𝑝 be a predicate, and 𝑥 be one of the Boolean variables.
The existential quantification of 𝑥 is defined as:

∃𝑥.𝑝 = 𝑝 |𝑥=𝑡𝑟𝑢𝑒 ∨ 𝑝 |𝑥= 𝑓 𝑎𝑙𝑠𝑒,

where 𝑝 |𝑥=𝑡𝑟𝑢𝑒/ 𝑓 𝑎𝑙𝑠𝑒 evaluates the value of 𝑝 by substituting
𝑥 with 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒.

Assume the input predicate is 𝑃, and the relevant fields are
𝑥1, . . . , 𝑥𝑘 . The new value to be set is specified by predicate
𝑉 . Then the whole process is denoted by

𝑇 (𝑃) = (∃𝑥1. . .∃𝑥𝑘 .𝑃) ∧𝑉.

Type Check: We can check whether it is a VxLAN packet
or a non-VxLAN packet using the universal quantification on
predicate. The universal quantification of 𝑥 is defined as ∀𝑥.𝑝.
We can assert its value to check whether 𝑥 has been assigned
with a value. In particular, we use the full VNI field bits, and
check the value of ∀𝑥1∀𝑥2. . .∀𝑥𝑘 .𝑝, where 𝑘 is the length of
the VNI field. If the value is 𝑓 𝑎𝑙𝑠𝑒, the VNI field is defined,
and it is a VxLAN packet. Otherwise, it is a non-VxLAN
packet.

Another type check is to check whether a property of
the packet is smaller than a particular value (e.g., the vsys
forwarding times are not allowed to be larger than two). We
use the reserved field (variable) to express the property. We
rely on the fact that there are limited number of values (e.g.,
2-bit can represent {0,1,2}), and convert the check problem to
the existence problem. For example, smaller than two means
that AND with {0,1} is true for the 2-bit variable.

Local Processing: To support local processing, we use the
reserved field and a new variable. The length of the variable
depends on the forwarding type. Initially, the variable does
not have any value. When a packet enters a device, if the
processing is to set a value, we use erase-and-set to set it. If the
processing is self-increment, we can use type check and erase-
and-set to implement it. For example, if the value is checked
to be 1, we erase the variable and set 2. After the packet
leaves the device, the variable is erased using the existential
quantification.

C. Backward Graph Model

Another novel part of our model is that we also build
reverse (or backward) edges in the graph. They are essential
for required waypoint path computation (see the definition
in Section III-B). The forward edge is mainly used to find
reachable endpoints starting from an endpoint. A symmetric
problem is to find start endpoints that can reach a given
endpoint. If the graph has backward edges, we can call the
same DFS algorithm to find all start endpoints.

Then we define the constraint of the backward edge. Note
that our target is to find reachable start endpoints instead of
finding the original header space of start endpoints (actually
it is difficult to infer the input header space given the output
header space and the forward edge’s constraint). Thus, we can
reuse the constraint of forward edges. In particular, for the
normal forwarding action and the check action, the constraint
in the backward edge is the same with the forward edge. For
the erase-and-set actions, all values are possible for the erased
fields, and we should set them to ONE. Therefore, assuming
the input predicate is 𝑃 and the edge constraint is 𝑉 , the output
of the reverse edge can be denoted by ∃𝑥1. . .∃𝑥𝑘 .(𝑃 ∧𝑉).

V. ALGORITHM DESIGN

Provided the aforementioned models, we design algorithms
to compute the initial all-pair reachability matrix, and sup-
port incremental computation of the matrix. In particular, we
present a general reachability computation algorithm that is
fast and tailored for our network model. Then, we present two
incremental algorithms based on the general algorithm, one
algorithm that leverages a novel search strategy and stored
information to reduce computation and the other algorithm that
further reduces computation for some scenarios. The proof of
algorithm correctness are provided in Appendix B.

The time complexity of all proposed algorithm is polyno-
mial (and scalable) with respect to the network size and the
number of changed interfaces under practical DCN topology.
The space complexity is hard to characterize, but we have
successfully demonstrated that at most 8G memory is needed
for 200 leafs, a lightweight implementation for commercial
use. Detailed analysis can be found in Appendix C.

A. General Reachability Computation Algorithm

We use all-pair reachability matrix computation for example
to explain the algorithm. The all-pair reachability matrix is
computed when the network is first uploaded to our verifier.
Then it is updated incrementally. Actually, the algorithm can
be used to compute incremental elements in the matrix as well
(i.e., incremental verification in Section V-B and Section V-C).

To compute the initial all-pair reachability matrix, a naı̈ve
approach is to compute 𝑁2 pairs’ reachability for a network
with 𝑁 endpoints. In particular, we leverage the classical
depth-first search (DFS) algorithm3 (with some modifications)
to find reachable header space. For a pair (𝑆, 𝐷), we can
construct the input header space (without VxLAN fields) using
destination’s subnet information, and then start to traverse the
graph. After passing through an edge, a new header space is
got by conjunction of the original header space and the edge’s
header space. If the conjunction leads to 𝑓 𝑎𝑙𝑠𝑒 or this search
reaches the destination endpoint, this path terminates (the latter
case means the pair is reachable). Due to the possibility of
multiple paths4, even if our algorithm has found a path, it still
needs to backtrack to find other paths. The traversal stops when
all possible paths are explored. To avoid infinite computations,

3 Depth-first search is superior to breadth-first search since it can also return
paths explicitly, which benefits display and debug.

4 For a pair (𝑆, 𝐷) , some packets may go from 𝑆 to 𝐷 directly, and other
packets may visit other devices, making other path be (𝑆, . . . , 𝐷).
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Fig. 5: Cumulative distribution function of DFS-DEST-ONE-
EP and DFS-DEST-ALL-EP computation time for a network
with 20 leafs (400 endpoints).

our algorithm also incorporates a loop detection routine that
breaks the current search and backtracks, if a loop is found.
A loop is defined as a revisit of an interface that appears in
the current path with smaller header space.

A drawback of the above algorithm is an intensive compu-
tation of 𝑁2 pairs. If we only care about reachable pairs, we
can merge the destination endpoints and invoke 𝑁 rounds of
computation only. That is, for each round of computation, the
target pair is (𝑆, {𝐷1, . . . , 𝐷𝑁 }). Meanwhile, we use the full
header space ONE for traversal5, since we consider a set of
destinations. The other parts of the depth-first algorithm are
the same. The overall process is summarized in Algorithm 1.

Below, to compare these two algorithms, we call the
first algorithm that runs 𝑁 rounds to find the reacha-
bility (𝑆, {𝐷1, . . . , 𝐷𝑁 }) as DFS-DEST-ONE-EP, and the
second algorithm that one round to find the reachability
(𝑆, {𝐷1, . . . , 𝐷𝑁 }) as DFS-DEST-ALL-EP. Actually, Tenant-
Guard [12] adopts DFS-DEST-ONE-EP, since it needs to
associate devices with each pair. For PPV, it only needs to
associate interfaces with reachable pairs, and thus PPV adopts
DFS-DEST-ALL-EP.

Figure 5 shows the computation time of these two search
algorithms (excluding the model construction time). The used
dataset is a network with 20 leafs and 400 endpoints. The
details of the network can be found in Section VI-B. As we
can see, the performance of DFS-DEST-ALL-EP is better than
that of DFS-DEST-ONE-EP, due to aggregated computation
of 𝑁 destination endpoints, although per-destination of DFS-
DEST-ONE-EP is faster than DFS-DEST-ALL-EP. The result
also explains why TenantGuard performs poorly for various in-
cremental update cases (see Section VI), because TenantGuard
needs to call DFS-DEST-ONE-EP for each possibly affected
pair.

Indexing: When a reachability pair is found, we can parse
the reachability path, and extract the visited interfaces. Then
we can build an reachability table that links interfaces and

5 In fact, we can use a union of each destination’s header space. A narrower
input may prune more branches and terminate earlier during the search. For
simplicity, we adopt the full header space ONE.

Algorithm 1 General Reachability Computation

Input:
• 𝑔𝑟𝑎𝑝ℎ: forwarding graph model
• 𝑠𝑡𝑎𝑟𝑡𝐼𝑛 𝑓 : start endpoint
• 𝑖𝑛 𝑓 𝑆𝑒𝑡: target endpoints

Output:
• 𝑚𝑎𝑡𝑟𝑖𝑥: reachability matrix

1: 𝑝𝑎𝑡ℎ← {}
2: 𝐷𝐹𝑆(𝑠𝑡𝑎𝑟𝑡𝐼𝑛 𝑓 , 𝑂𝑁𝐸, 𝑝𝑎𝑡ℎ)
3:
4: procedure DFS(𝑖𝑛 𝑓 , 𝑝, 𝑝𝑎𝑡ℎ)
5: 𝑝𝑎𝑡ℎ.𝑎𝑝𝑝𝑒𝑛𝑑{𝑖𝑛 𝑓 }
6: 𝑛𝑥𝑡𝐼𝑛 𝑓 𝑠← 𝑔𝑟𝑎𝑝ℎ.𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒(𝑖𝑛 𝑓 )
7: foreach 𝑛𝑥𝑡𝐼𝑛 𝑓 ∈ 𝑛𝑥𝑡𝐼𝑛 𝑓 𝑠 do
8: 𝑝0 ← 𝑔𝑟𝑎𝑝ℎ.𝑔𝑒𝑡𝐸𝑑𝑔𝑒𝐻𝑒𝑎𝑑𝑒𝑟𝑆𝑝𝑎𝑐𝑒(𝑖𝑛 𝑓 , 𝑛𝑥𝑡𝐼𝑛 𝑓 )
9: if 𝑝 ∧ 𝑝0 == 𝑓 𝑎𝑙𝑠𝑒 or 𝑛𝑥𝑡𝐼 𝑓 𝑎𝑐𝑒 ∈ 𝑝𝑎𝑡ℎ then

10: continue
11: if 𝑛𝑥𝑡𝐼𝑛 𝑓 ∈ 𝑖𝑛 𝑓 𝑆𝑒𝑡 then
12: 𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑛 𝑓 , 𝑛𝑥𝑡𝐼𝑛 𝑓 ) = {𝑝 ∧ 𝑝0, 𝑝𝑎𝑡ℎ}
13: continue
14: 𝑝 ← 𝑝 ∧ 𝑝0
15: 𝐷𝐹𝑆(𝑛𝑥𝑡𝐼𝑛 𝑓 , 𝑝, 𝑝𝑎𝑡ℎ)
16: 𝑝𝑎𝑡ℎ.𝑝𝑜𝑝()

reachability pairs. The reachability table is used in incremental
computation to find possibly affected pairs in Section V-B.

However, simply recording visited interfaces does not pro-
duce the optimal performance in network overlay DCNs.
Consider NVE interfaces that carry all possible VxLAN traffic.
The traffic are to other VTEPs, and even to different VRFs in
the same VTEP (i.e., with different VNI). If NVE is used
for indexing, the coarse grained association will lead to many
false positives of affected pairs. Therefore, we split the NVE
interface into NVE:NODE1:VRF1:NODE2:VRF2 using path
information, and record corresponding reachable pair.

In addition, we need to differentiate the inbound and out-
bound direction, since policy can be applied in either direction.
The direction can be extracted from the reachability path: for
an edge, the outgoing interface is the outbound direction, and
the incoming interface is the inbound direction.

B. Incremental Algorithm with Reachability Table

Our configuration verifier performs incremental compu-
tation of all-pair reachability in three steps, as shown in
Algorithm 2. The key idea is to use Required Waypoint
Path computation and a reachability table. We refer to this
incremental verification algorithm as RWP-I.

Changed Interface Detection: We use interfaces as the
basic element to find all changed nodes and their associated
changed edges in the graph. To identify FIB forwarding
changes, we need to first find changed forwarding rules in FIBs
based on incremental configurations. For the current being,
we have not implemented an incremental protocol simulator.
Thus we use the full protocol simulation to generate a new
FIB, and compare these two FIBs to find outbound interfaces
that change their forwarding behavior. Moreover, to reduce
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Algorithm 2 Incremental All-Pair Reachability Analysis I

Input:
• 𝑖𝑛𝑑𝑒𝑥𝑇𝑎𝑏𝑙𝑒: reachability table that associates interfaces

with reachable pairs
• 𝑜𝑙𝑑𝑀𝑎𝑡𝑟𝑖𝑥: original reachability matrix
• 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ: forwarding graph in the new network

Output:
• 𝑎𝑑𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠: pairs that are newly reachable
• 𝑑𝑒𝑙𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠: pairs that are no longer reachable
• 𝑚𝑜𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠: pairs whose reachability changed

1: 𝑖𝑛 𝑓 𝑆𝑒𝑡 ← findChangedInfs()
2:
3: 𝑛𝑒𝑤𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 = {}, 𝑛𝑒𝑤𝑀𝑎𝑡𝑟𝑖𝑥 = {}
4: foreach 𝑖𝑛 𝑓 ∈ 𝑖𝑛 𝑓 𝑆𝑒𝑡 do
5: 𝑝𝑛 ← 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ.𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝐻𝑒𝑎𝑑𝑒𝑟𝑆𝑝𝑎𝑐𝑒(𝑖𝑛 𝑓 )
6: 𝑛𝑝𝑎𝑡ℎ𝑠← waypointPaths(𝑖𝑛 𝑓 , 𝑝𝑛, 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ)
7: foreach 𝑝 ∈ 𝑛𝑝𝑎𝑡ℎ𝑠 do
8: 𝑛𝑒𝑤𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠.𝑎𝑑𝑑 ((𝑝.𝑠𝑡𝑎𝑟𝑡, 𝑝.𝑒𝑛𝑑))
9: 𝑛𝑒𝑤𝑀𝑎𝑡𝑟𝑖𝑥((𝑝.𝑠𝑡𝑎𝑟𝑡, 𝑝.𝑒𝑛𝑑)).𝑎𝑑𝑑 (𝑝)

10:
11: 𝑜𝑙𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 = 𝑖𝑛𝑑𝑒𝑥𝑇𝑎𝑏𝑙𝑒(𝑖𝑛 𝑓 𝑆𝑒𝑡)
12: 𝑎𝑑𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 = 𝑛𝑒𝑤𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 − 𝑜𝑙𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠
13: 𝑑𝑒𝑙𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 = 𝑜𝑙𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 − 𝑛𝑒𝑤𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠
14: 𝑚𝑜𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 = {}
15: foreach 𝑝𝑎𝑖𝑟 ∈ 𝑜𝑙𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 ∩ 𝑛𝑒𝑤𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠 do
16: if 𝑜𝑙𝑑𝑀𝑎𝑡𝑟𝑖𝑥(𝑝𝑎𝑖𝑟) ≠ 𝑛𝑒𝑤𝑀𝑎𝑡𝑟𝑖𝑥(𝑝𝑎𝑖𝑟) then
17: 𝑚𝑜𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠.𝑎𝑑𝑑 (𝑝𝑎𝑖𝑟)

false positives that forwarding rules change but the actual
forwarding remains unchanged, we re-compute forwarding
edge constraints, and compare the edge predicates. If the
two predicates are the same, although the FIB rules change,
the interface is not marked as modified since its forwarding
behavior does not change.

For policy changes such as ACLs or MCS, we iterate
over all interfaces in the configuration model, and compare
their associated policies. Similarly, we convert the policies
to predicate in the forwarding graph, and compare the cor-
responding graphs to determine changed interfaces. Overall,
changed nodes and edges are divided into three categories:

• ADD: interfaces only exist in the new network;
• DEL: interfaces only exist in the original network;
• MOD: interfaces exist in both networks, but their for-

warding behavior changes.

Required Waypoint Path Computation: To compute
reachability changes, a straightforward idea is to lookup the
reachability table, and re-compute reachability paths of these
possibly affected pairs. By comparing reachability results of
these pairs, the algorithm can identify reachability changes.
However, this algorithm may ignore new reachable pairs that
are induced by changes. For example, originally two endpoints
could not communicate, and cross-VRF static route changes
on border leafs are deployed to open a new connection. In
this case, no relationship between interfaces and the pair is
established, and thus the approach cannot issue re-computation

of the two endpoints’ reachability.
Therefore, we propose a new algorithm that is able to find

new reachable pairs. The key idea is to treat these changes
interfaces as required waypoints, and compute all reachable
paths (pairs) that visit these changed interfaces, including new
reachable pairs. There is no need to consider other reachable
pairs whose reachable paths do not visit changed interfaces,
since their reachability are the same in the original and new
networks. The argument can be proved by contradiction: if the
reachability of a pair changes, there must be an interface (edge)
that has a different forwarding constraint. Then the interface
must be a changed interface, leading to a contradiction.

To compute required waypoint paths, previous approaches
[4], [9], [19] propose to compute all possible paths, and
eliminate paths that do not include the required waypoints.
It is inefficient since it requires 𝑁 rounds of DFS traversal for
𝑁 endpoints. Therefore, we propose to use a combination of
forward traversal and backward traversal to compute required
waypoint paths: 1) we start from the waypoint interface, and
compute all reachable paths (endpoints) via forward traversal;
and 2) we use backward traversal to find all reachable paths
that terminate at the interface (i.e., all endpoints that can reach
the waypoint). Given all forward reachable paths and backward
reachable paths (and their allowed header space), we can do
conjunction to filter infeasible paths that have empty header
space, and get all paths that visit the required waypoints. In our
algorithm, we perform the required waypoint path computation
for changed interfaces marked as ADD and MOD.

Comparison: Required waypoint path computation gener-
ates the new reachability results related to changed interfaces.
Using changed interfaces with all types (including type DEL),
we can also lookup the reachability table to extract reachable
pairs in the original network, and get original reachability
results from the all-pair reachability matrix. By comparing
the two sets of reachable pairs and their reachability results,
we can find reachability changes. Meanwhile, we can update
the all-pair reachability matrix by reachability changes. In
this way, we can keep the all-pair reachability matrix and the
reachability table up to update.

C. Incremental Algorithm without Reachability Table

The algorithm presented in Section V-B is not efficient if the
required waypoints are critical nodes that are associated with
many reachability pairs in the network (e.g., NVE in border
leafs). If a required waypoint path computation is performed,
all related reachability paths (pairs) are computed. Even worse,
different from the single-rule change setup in previous data-
plane incremental verification algorithms [5]–[10], configura-
tion changes always involve with several devices (consider a
route update propagates a prefix to the whole network). It may
lead to several waypoint path computation in different devices,
further lowering down the performance.

The problem is caused by using the complete header space
of changed interfaces in the new network. In fact, with the
header space information in the original network, we can
differentiate them to get the diff header space that is added
or removed. Then, we use the diff header space for required
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Algorithm 3 Incremental All-Pair Reachability Analysis II

Input:
• 𝑜𝑙𝑑𝐺𝑟𝑎𝑝ℎ: forwarding graph in the old network
• 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ: forwarding graph in the new network

Output: same with Algorithm 2
1: 𝑖𝑛 𝑓 𝑆𝑒𝑡 ← findChangedInfs()
2: foreach 𝑖𝑛 𝑓 ∈ 𝑖𝑛 𝑓 𝑆𝑒𝑡 do
3: ℎ𝑜

𝑖
← 𝑜𝑙𝑑𝐺𝑟𝑎𝑝ℎ.𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝐻𝑒𝑎𝑑𝑒𝑟𝑆𝑝𝑎𝑐𝑒(𝑖𝑛 𝑓 )

4: ℎ𝑛
𝑖
← 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ.𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝐻𝑒𝑎𝑑𝑒𝑟𝑆𝑝𝑎𝑐𝑒(𝑖𝑛 𝑓 )

5: 𝛿𝑜
𝑖
← ℎ𝑜

𝑖
− ℎ𝑜

𝑖
∧ ℎ𝑛

𝑖

6: 𝛿𝑛
𝑖
← ℎ𝑛

𝑖
− ℎ𝑜

𝑖
∧ ℎ𝑛

𝑖

7: 𝑜𝑝𝑎𝑡ℎ𝑠← waypointPaths(𝑖𝑛 𝑓 , 𝛿𝑜
𝑖
, 𝑜𝑙𝑑𝐺𝑟𝑎𝑝ℎ)

8: 𝑛𝑝𝑎𝑡ℎ𝑠← waypointPaths(𝑖𝑛 𝑓 , 𝛿𝑛
𝑖
, 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ)

9: foreach 𝑝 ∈ 𝑜𝑝𝑎𝑡ℎ𝑠.𝑝𝑎𝑟𝑖𝑠 ∪ 𝑛𝑝𝑎𝑡ℎ𝑠.𝑝𝑎𝑖𝑟𝑠 do
10: if 𝑝 ∈ 𝑜𝑝𝑎𝑡ℎ𝑠.𝑝𝑎𝑖𝑟𝑠 and 𝑝 ∉ 𝑛𝑝𝑎𝑡ℎ𝑠.𝑝𝑎𝑖𝑟𝑠 then
11: 𝑑𝑒𝑙𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠.𝑎𝑑𝑑 (𝑝)
12: if 𝑝 ∉ 𝑜𝑝𝑎𝑡ℎ𝑠.𝑝𝑎𝑖𝑟𝑠 and 𝑝 ∈ 𝑛𝑝𝑎𝑡ℎ𝑠.𝑝𝑎𝑖𝑟𝑠 then
13: 𝑎𝑑𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠.𝑎𝑑𝑑 (𝑝)
14: if 𝑜𝑝𝑎𝑡ℎ𝑠.𝑔𝑒𝑡 (𝑝) ≠ 𝑛𝑝𝑎𝑡ℎ𝑠.𝑔𝑒𝑡 (𝑝) then
15: 𝑚𝑜𝑑𝑅𝑒𝑎𝑐ℎ𝑃𝑎𝑖𝑟𝑠.𝑎𝑑𝑑 (𝑝)

waypoint path computation in the new network. Instead of us-
ing reachability table, we further use the diff header space for
required waypoint path computation in the original network to
find related reachability pairs. Then, we compare their results
to get reachability changes. The new incremental verification
algorithm is referred to as RWP-II.

However, such optimization does not always lead to im-
provement, and may lead to performance degradation, since
the new incremental algorithm requires two rounds of required
waypoint path computation. Consider a small network. Even
if changed interfaces trigger full-scale computation, the per-
round computation time does not make a big difference
given complete header space or diff header space. We also
note that this technique cannot be used to improve RWP-I,
because RWP-I needs to compute all reachable pairs in the
new network. Otherwise, the comparison may produce false
positives, since the indexing step finds all reachable pairs in
the original network.

Overall, RWP-II is more appropriate when the network size
is large (e.g., >100 leafs as shown in Section VI-C). Another
advantage of RWP-II is that it does not require computation
of the initial all-pair reachability matrix (and the reachability
table), since RWP-II does not count on the reachability table
to find reachability changes. It may save some computation
when initializing the network and memory resource, and is
more efficient.

VI. PERFORMANCE EVALUATION

A. Implementation
We have implemented the configuration verifier with full

components as shown in Figure 3 as a microservice. The
verifier was integrated into a network controller for pre-
deployment network validation, and is to be deployed in
production environment.

Our configuration verifier is based on Batfish [4], an open-
source configuration verifier. In terms of the configuration

and protocol models, we have the following enhancements:
1) we support the CLI parsing and modeling of Huawei
configurations; 2) we support the YANG XML inputs and
3) we support BGP EVPN protocol simulation of Huawei
devices.

For the verification algorithms, we reuse the forwarding
graph model in Batfish, and simplify some parts to fit our
port predicate model introduced in Section IV. We develop
our own all-pair reachability analyzer, including the initial and
differential reachability matrix computation, with around 4K
lines of Java code. For the BDD library, we use JavaBDD
[20]. Our implementation is single-threaded since JavaBDD
does not support multi-threads for a created BDD factory.
Meanwhile, we also limit the memory usage of our verifier
to 8G6 to enable lightweight deployment.
B. Setup

Datasets: We use both real network datasets and synthetic
network datasets to evaluate the performance of our configura-
tion verifier. Each dataset contains base CLI configurations and
YANG XMLs corresponding to service update. The dataset
includes both underlay and overlay configurations. OSPF is
used as the underlay IGP protocol, and BGP EVPN is used in
overlay.

For the real network, we use eight Huawei CloudEngine
6800 switches and one Huawei USG6000V virtual firewall.
Meanwhile, we use Huawei AC controller to control devices
and deploy new services. Before service update, we use the
controller to collect full CLI configurations as base. After
each service update, we use the controller to collect full CLI
configurations as delta.

To evaluate the scalability of our algorithms, we use syn-
thetic network datasets. We follow the traffic pattern in real
networks to simulate the synthetic networks. The base dataset
simulates a network with several VPCs. There are some inter-
VPC traffic through cross-VRF static routes, and some intra-
VPC traffic with MCS control. In addition, the number of
VPC increases as network scales, while the scale of each VPC
remains unchanged. In particular, the generation rules are as
follows:
• We fix the number of VPCs per server leaf to twenty,

and each VPC has ten different subnets distributed over
different server leafs (to emulate that VMs belonging to
the same VPC are up at different server leafs). Each
subnet belongs to a layer-3 VBDIF (and layer-2 BDIF),
and each VBDIF belongs to a VRF.

• Cross-VRF static routes are generated on border leafs to
enable inter-VPC traffic, and the route number is equal
to the number of VPCs.

• MCS policies are configured to explicitly allow access of
subnets that belong to the same VPC. Each subnet be-
longs to a unique group ID, and MCS policy is specified
on group IDs. The number of MCS policy rules is equal
to the number of VPCs.

For each dataset, we also have two spines, two border leafs
and one firewall. In the following, we use BDIFs as endpoints,

6 Note that open-source Batfish [4] recommends at least 32GB RAM to
verify real networks, four times of our implementation.
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Dataset Leafs
(VPCs)

Subnets
(EPs)

MCS
Rules

Static
Routes

FIB
Rules

DS0 20 400 40 40 13,428
DS1 50 1000 100 100 59,808
DS2 100 2000 200 200 144,508
DS3 200 4000 400 400 388,908

TABLE I: Base network datasets
since VMs are first attached to them. Table I summarizes our
base datasets. We vary the number of server leafs from 20
(i.e., 400 endpoints) to 200 (i.e., 4000 endpoints).

Service Update: For incremental configurations, we con-
sider the following typical service updates:
• Case A (ADD SUBNET): We randomly choose a VRF,

and add one new subnet to allow more intra-VPC subnet
access. The configuration changes happen in server leafs
only.

• Case B (ADD VPC): We create a new VPC, and
distribute ten subnets over existing server leafs randomly.
The configuration changes happen in server leafs only.

• Case C (ADD INTER VPC): We randomly choose one
VPC pair, and add two cross-VRF static routes to allow
more inter-VPC subnet access. The configuration changes
happen in border leafs only.

• Case D (ADD MCS POLICY): We randomly choose
one subnet pair (same VPC), and add a new MCS
policy rule to allow more intra-VPC subnet access. The
configuration changes happen in server leafs only.

• Case E (ADD PBR POLICY): We randomly choose
one subnet pair (same VPC), and add PBR policy rules
to redirect the traffic to firewall and then get back. The
configuration changes happen in server leafs, border leafs
and firewall.

Methods: We compare our algorithms (RWP-I in Section
V-B and RWP-II in Section V-C) with the following algo-
rithms:
• TenantGuard [12]. The algorithm computes the initial

all-pair reachability matrix, and establish the device-
level association reachability table. Then, the algorithm
lookups possibly affected pairs through changed inter-
faces, and re-compute their reachability. We only measure
the time for incremental verification.

• Baseline algorithm. The algorithm re-computes the all-
pair reachability matrix for incremental configurations
using DFS-DEST-ALL-EP in Section V-A, and compare
it with the original reachability matrix. This algorithm
provides benchmark results, and is used to check cor-
rectness of other algorithms.

Metric: we measure the incremental verification time, in-
cluding new forwarding graph construction time, changed
interface detection time, required waypoint path computation
time, and comparison time. We do not measure the protocol
simulation time for incremental configurations, since they are
the same for all methods.

All experiments are run on Huawei RH2288H V3 Server
with Intel Xeon CPU E5-2600 v3@2.60GHz and 128G RAM.
Note that our program is single-threaded, and does not use the
full memory (we limit the maximum memory usage of Java
Virtual Machine to 8G). For each point, we run experiments
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Fig. 6: Cumulative distribution function of change impact
analysis time for various service updates in a real network
(8 leafs with around 10 endpoints).

five times, and present the average result with 95% confidence
interval.

C. Experiment Results

1) Verification Time for Real Networks: We first perform
experiments to see our verifier’s performance in practical use,
especially for small-scale networks. Figure 6 shows the overall
analysis time of all algorithms for different service update
cases. We generate 120 use cases, including adding/remov-
ing/deleting VPCs, BDIFs, cross-VRF static routes, ACLs and
PBR policy.

For most cases (90%), RWP-I finishes the analysis within
0.25s, demonstrating a fast response time of our configuration
verifier. Meanwhile, RWP-I outperforms TenantGuard (about
80%) due to its narrowed recomputation scope (changed
interfaces versus changed interfaces). Furthermore, RWP-I is
faster than RWP-II for the small-scale network, as explained
in Section V-C. RWP-II performs worse than TenantGuard due
to its heavyweight recomputation in small-scale networks, but
it outperforms the baseline algorithm most of time.

2) Verification Time for Synthetic Networks: Figures 7 to
11 shows the performance of different algorithms for studied
cases. We only show the results for ADD scenarios, and the
results for other scenarios are similar.

Impact of different updates: For TenantGuard, the perfor-
mance approaches the baseline algorithm for cases A, B and C
in networks with 20 and 50 leafs. The reason is that new routes
are propagated to almost all devices for A, B and C, and these
devices are associated with almost all pairs, leading to almost
re-computation. For case E in networks with 20 and 50 leafs,
the policy changes happen in NVE at border leafs, and border
leafs are also associated with almost all pairs. For other cases
(e.g., cases A to E in networks with 100/200 leafs), the route
propagation may not reach all devices, or the policy changes
are not associated with all pairs (for larger networks, some
traffic may not go through border leafs). Thus, there is a gap
between them. In contrast, the performance of our algorithms
is better than TenantGuard since our algorithms can filter
irrelevant pairs using required waypoint path computation. The
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Fig. 7: Algorithm performance compari-
sion for case A.
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Fig. 8: Algorithm performance compari-
sion for case B.
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Fig. 9: Algorithm performance compari-
sion for case C.
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Fig. 10: Algorithm performance compari-
sion for case D.
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Fig. 11: Algorithm performance compari-
sion for case E.
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Fig. 12: Comparison of different com-
ponents’ computation time for our algo-
rithms (left: RWP-I, right: RWP-II).

improvement ranges from 50% to 900% (i.e., for cases A and
E with 200 leafs).

Moreover, our algorithm RWP-II is better than RWP-I for
cases D and E, especially for large networks with 100 and 200
leafs. The reason is that the number of possibly affected pairs
that RWP-I computes is large, since changed interfaces in case
D and E are associated with many reachability pairs. Instead,
RWP-II uses the differential header space, and improves the
accuracy of possibly affected pairs. Thus, the performance of
RWP-II is better. For cases A to C, the performance is almost
the same since the effectiveness of possibly affected pairs is
almost the same. In some cases, RWP-I may perform better
than RWP-II, since RWP-I only invokes one round of required
waypoint path computation while RWP-II invokes two rounds.

Scalability: Another message is that RWP-II is scalable.
More accurately, the performance of RWP-II depends on the
scale of reachability changed pairs, and is almost irrelevant
to the network scale. For cases A to E, the analysis time of
RWP-II increases slightly for different number of leafs (almost
linear), while that of RWP-I increases a lot. To investigate
the impact of different components to our algorithms, we plot
the time consumed by different components for case E for
different number of leafs in Figure 12 (for case E, there is
only one pair that changes reachability). As we can see, the
time consumed by required waypoint computation is almost
the same, and the comparison time is negligible, meaning
RWP-II is accurate to find relevant pairs that change reach-

ability. However, the graph model construction time and the
changed interface detection time mainly contribute to the linear
increase. It is due to that our algorithms compare the whole
network model to find changed interfaces, while the model
becomes more complex as network scales. Meanwhile, the
required waypoint path computation time mainly contributes
to the time increase of RWP-I, since using current header
space leads to many false positives of possibly affected pairs
as network scales.

Overall, the results show that our algorithms are signifi-
cantly better than existing incremental approaches. In addition,
RWP-I performs almost better than RWP-II for small-scale
networks, while RWP-II is preferable if the service update
leads to many critical interfaces that change their forwarding
behavior (especially for large-scale networks). Moreover, al-
though we only simulate networks up to 200 leafs, we believe
that our incremental verification algorithms (especially RWP-
II) are scalable for larger networks, since the current results
show almost linear increases as network size increases.

3) Protocol Simulation Time: So far, we have assumed the
use of a complete protocol simulation even for incremental
configurations. The assumption does not invalidate our con-
clusions, since all algorithms need simulation first. A question
is whether protocol simulation slows down the whole change
impact analysis procedure. Figure 13 shows the simulation
time for all synthetic datasets. We group results of different
service updates for the same number of leafs since they all
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Fig. 13: Cumulative distribution function of protocol simula-
tion time for synthetic networks.

use a complete simulation. As we can see, for the studied
cases, the simulation time increases almost linearly as the
number of leafs increases. For the 200 leaf case, the maximum
simulation time is at most 20s, meaning that the end-to-end
time for change impact analysis is less than 35s (i.e., the
overall improvement is around 4.3x), acceptable for practical
usage. In future, a protocol simulator that supports incremental
simulation (e.g., RealConfig [21]) could benefit the end-to-end
change impact analysis. Furthermore, an incremental forward-
ing graph model with faster changed interface detection time
is also preferable.

VII. RELATED WORK

Data-plane Network Verifiers: ConfigChecker [22] uses
symbolic model checking to model the data-plane forwarding
and verify network reachability, where state is the packet
IP header and the current location of the packet. Anteater
[23] models the data-plane forwarding as an instance of
Boolean satisfiability problems (SAT), and use a SAT solver
to find counterexamples if reachability intent violations are
found. HSA [17] is the first paper that proposes the header
space analysis framework for data-plane verification. NOD
[24] uses network optimized Datalog to encode data plane,
and leverages the build-in Datalog solvers to check network
invariants. However, they are all offline, and could not meet the
real-time requirement of incremental verification. Furthermore,
their frameworks do not support incremental verification.

Real-time data-plane verifiers [5]–[12], [15] are the closest
work to us. Although NetPlumber [11] supports incremental
computation, its high memory usage (due to per-rule node
model and per-flow caching mechanism for all rule nodes)
makes it unpractical for large-scale overlay networks. EC
approaches [5]–[10], [15] either lack the generality to support
new network features in network overlay DCNs, or may have
efficiency problem as explained in Section II-B. TenantGuard
[12] also uses indexing approach for incremental computa-
tion, but targets overlay networks without in-network policy
control. Its all-pair reachability computation is inefficient and
its association mechanism is suboptimal for network overlay
DCNs. We present a new indexing technique, and complement
the approach with required waypoint path computation.

Data-plane state consistency is quite challenging for large-
scale DCNs due to unavoidable hardware faults [25], which
affects the verification accuracy. To address this issue, RCDC
[26] exploits the regular topology structure of DCNs, and per-
forms local checks to identify data-plane forwarding anomaly.
It is fast but it targets underlay networks and could not
return end-to-end paths. Plotkin et. al. [27] also leverages the
topology regularities, and uses network transformation tech-
niques to accelerate reachability query. Although it does not
solve the incremental verification problem, the transformation
idea can be incorporated into our verifier to further improve
performance.

Control-plane Network Verifiers: Batfish [4], [28] is the
first verifier that performs real-time configuration verification
for a concrete environment, and converts the control-plane
verification problem to the data-plane verification problem.
Batfish [28] uses Datalog to encode control-plane semantic,
and relies on a fixed point computation to get a converged
data plane. Open-source Batfish [4] writes customized codes
to perform protocol simulation. We follow the same approach
to build PPV. However, they both do not support change impact
analysis in an incremental manner. Instead, PPV presents two
incremental algorithms for all-pair reachability analysis, and
achieves better performance than the baseline algorithm.

Most control-plane verifiers [19], [29]–[32] target multi-
environment control-plane verification problem, where reacha-
bility invariants are checked under any link failures or external
route advertisements. They do not perform protocol simula-
tion, and conduct verification on control-plane network model
directly. Hoyan [33] adopts the symbolic protocol simulation
approach to tackle the 𝑘-failure verification problem. Their
target scenarios are orthogonal to us. Bonsai [34] is the
control-plane verification tool that compresses large networks
into smaller ones with similar behavior. ShapeShifter [35]
further provides an abstract interpretation of network control
planes that achieves a tradeoff between verification scalability
and accuracy. These new models can be used by PPV to
improve performance.

NUV [36] is the first paper to consider configuration change
impact analysis from control-plane model. The key idea is to
build a table that associates configuration change type with
possibly affected pairs. It first uses Bonsai [34] to simplify the
model, and then leverages the table to infer possibly affected
pairs. It targets IP or ACL forwarding scenarios, and thus
its association guidance may not apply to network overlay
DCNs. Furthermore, even if PPV uses the data-plane approach,
PPV’s performance (35s for 200 leafs) is comparable to that
of NUV (441.16s on average for studied networks with 2 to
500 routers).

Other Network Verifiers: AWS Tiros [37] focuses on the
tenant-level VPC network verification, where the forward-
ing behavior of VPC networks are different from network
overlay DCNs. Symnet [38] and Netdiff [39] focus on data
plane equivalence verification of designed VPC networks and
their implementation.They use symbolic execution techniques.
VMN [40] and NetSMC [41] focus on stateful network
verification where policies are enforced on stateful network
functions (e.g., proxies, load balancers).
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VIII. CONCLUSION

We have presented and experimentally evaluated the first
configuration verifier that supports incremental configuration
verification and outperforms existing approaches by 10x for
network overlay DCNs. Thanks to the new indexing technique
and the new required waypoint path computation technique,
our verifier achieves fast change-impact analysis of delta con-
figurations. Going forward, an incremental protocol simulator,
and supporting host overlay DCNs (including OpenFlow rules
and stateful packet filtering rules) and larger networks (e.g.,
multi-fabric DCNs) are interesting directions of future work.
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APPENDIX A: NEW FORWARDING FEATURE EXAMPLES

FIB Rules: Below shows an example FIB of Huawei
devices in network overlay DCNs, including a local route, a
VxLAN route and a cross-VRF static route. The routing table
name vpn1 means it belongs to the VPC that is implemented as
VRF vpn1. The special outgoing interface VXLAN indicates it
is a VxLAN route, and the next hop is the IP address of target
NVE. The cross-VRF static route uses target VRF’s name as
the outgoing interface, and the special IP address 0.0.0.0 as
the next hop.

Routing Table: vpn1

Destination/Mask Protocol Pre Cost Flags NextHop
Interface

192.168.1.0/24 Connected 0 0 NA 192.168.1.1 Vbdif1
192.168.2.1/32 IBGP 255 0 NA 10.1.1.1 VXLAN
192.168.3.0/24 Static 60 0 NA 0.0.0.0 vpn2

Firewall Security Policy: Below shows a concrete config-
uration of a zone security policy in a firewall. In addition to
the IP constraint, the policy also has a zone constraint, where
a zone is mapped to its associated interfaces. For a packet,
the source zone is determined when it enters an interface, the
destination zone is determined when it is to be forwarded out
of an interface, and then the security policy takes effect.

firewall zone trust
add interface GigabitEthernet1/0/0

firewall zone untrust
add interface GigabitEthernet1/0/1

security-policy
rule name policy_sec_01
source-zone untrust
destionation-zone trust
source-address 192.168.1.0 24
destination-address 192.168.2.0 24
action permit

Firewall NAT Policy: Below shows a concrete configura-
tion of a bidirectional NAT policy in a firewall. Bidirectional
NAT is usually used to simplify internal routing configurations
where the originally external source IPs are replaced by
internal firewall IPs, and thus there is no need to introduce
routes to external IPs inside the network (but there are routes
to the replaced internal IPs). In the bidirectional NAT example,
destination NAT (DNAT) and source NAT (SNAT) are bonded
together. If a packet matches DNAT, SNAT will be surely
applied when it is to be forwarded out of the device. This
forwarding feature introduces stateful packet processing: we
need to remember whether the packet matches DNAT in the
bidirectional NAT. In this way, we can ensure applying SNAT
by checking the state. Note that it is difficult to directly use
the original destination IP address (i.e., 1.1.10.10) as the SNAT
constraint, since the destination IP has been replaced by DNAT
(and may be further changed) during the pipilined forwarding.

nat address-group ag1
section 0 10.2.0.10 10.2.0.15

destination-nat address-group ag2
section 1 10.2.0.7 10.2.0.8

nat-policy
rule name policy_nat_01
destination-address 1.1.10.10 32
action source-nat address-group ag1
action destination-nat static address-to-address address-group ag2

PBR: Figure 14 shows an example network with PBR
configurations for Huawei devices. In this network, there are
two server leafs, one border leaf, one spine and one firewall.

The PBR configurations are on server leaf1 and border leaf.
As we can see, the PBR configurations are to redirect a flow
from endpoint A to endpoint B through the firewall. In server
leaf1, we need to configure a traffic policy tp 1 with redirect
behavior to the interface that is used by firewall to connect with
border leaf (i.e., 192.168.3.2 is the interface IP). The traffic
policy should be applied to the incoming endpoint interface.
Meanwhile, we need to configure another traffic policy tp 2
on border leaf. The condition that combines IP constraints and
VxLAN constraints (i.e., 10001 is the VNI value of VRF vpn1)
matches the redirected traffic, and the traffic is forwarded to
the firewall following the specified behavior. After firewall’s
processing, the traffic is forwarded back to border leaf, and
may follow the normal FIB forwarding to server leaf2.

Given the above configurations, we can easily construct the
service update case E in Section 6. In particular, the flow from
endpoint A to endpoint B goes through spine originally. After
applying PBR configurations, the flow is redirected through
firewall. Furthermore, it is difficult to design an efficient
incremental verification algorithm for this incremental con-
figurations. Note that, the tp 2 traffic policy is usually applied
in the global mode, where all interfaces are linked with the
new policy. That is, all interfaces on border leafs are marked as
MODIFY, making required waypoint path computation output
many reachability pairs. To tackle the challenge, we specially
design the RWP-II algorithm (see Section 5.3) that achieves a
good performance, as shown in Section 6.

acl name acl_1
rule 5 permit ip source 192.168.1.0 0.0.0.255 

destination 192.168.2.0 0.0.0.0.255

traffic classifier tc_1
if-match acl acl_1

traffic behavior tb_1
redirect remote vpn-instance vpn1 192.168.3.2

traffic policy tp_1
classifier tc_1 behavior tb_1

traffic classifier tc_2 type and
if-match vxlan acl acl_1
if-match vxlan vni 10001

traffic behavior tb_2
redirect vpn-instance vpn1 nexthop 192.168.3.2

traffic policy tp_2
classifier tc_2 behavior tb_2

traffic-policy tp_2 global inbound

Firewall
Border 
Leaf

Spine

Server
Leaf1

Server
Leaf2

EP A EP B

Fig. 14: An example network with PBR configurations

MCS: Figure 15 shows an example network with MCS con-
figurations for Huawei devices. In this network, there are two
server leafs, one border leaf, one spine and one firewall. The
MCS configurations are on server leaf1 and server leaf2. As
we can see, the group is defined on IPs, and the port/protocol
constraints are specified through policy rules (i.e., classifier
tc 1). In this example, the policy rule allows packets with
source group ID 32781, destination group ID 32780, protocol 6
(TCP) and destination port 80. Server leaf1 maps the packet’s
destination IP 192.168.1.0/24 in VRF vpn1 to group 32780,
while the source group ID 32781 was generated by server
leaf2 if the packet’s source IP is 192.168.2.0 in VRF vpn1.
Note that, since the source IP and the destination IP belong
to two VRFs, the flow is first routed to the border leaf.

It is easy to extend the base configurations to support new
services. To construct the service update case D in Section
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6, we can add a new group definition in server leaf1, and a
new policy rule that allows the two groups to communicate in
server leaf2.

traffic-segment segment-id 32781
segment-member ip 192.168.2.0 255.255.255.0 

vpn-instance vpn2

traffic-segment segment-id 32780
segment-member ip 192.168.1.0 255.255.255.0 

vpn-instance vpn1

traffic classifier tc_1
if-match source-segment 32781 destination-

segment 32780 protocol 6 destination-port 80

traffic behavior tb_1
permit

traffic policy tp_1
classifier tc_1 behavior tb_1

Firewall
Border 
Leaf

Spine

Server
Leaf1

Server
Leaf2

EP A EP B

Fig. 15: An example network with MCS configurations

APPENDIX B: PROOF OF ALGORITHM CORRECTNESS

It is easy to check that Algorithm 1 is correct. So we focus
on Algorithms 2 and 3.

A. Algorithm 2

Proof. It is obvious that required waypoint path computation
of an interface finds all reachable pairs (paths) that visit the
interface in the new graph. Looking up the reachability table
can find all reachable pairs (paths) that visit the interface in
the old graph. Comparing them can find reachability changes
related to the interface. Since Algorithm 2 calls required
waypoint path computation for all changed interfaces, we are
to prove that all reachability changes are due to changed
interfaces. That is, there are no pairs that changed their
reachability and are not related to any changed interfaces. We
prove it by contradiction.

Assume that a pair (𝑆, 𝐷) changes its reachability, and is not
related to any changed interfaces. Without loss of generality,
let me assume the pair has only one reachable path. The
reachable path in the old graph is (𝑆,𝑉𝑜

1 , . . . , 𝑉
𝑜
𝑘
, 𝐷), and the

reachable path in the new graph is (𝑆,𝑉𝑛
1 , . . . , 𝑉

𝑛
𝑙
, 𝐷). Since

there are no changed interfaces, the nexthop of 𝑆 must be
the same (i.e., 𝑉𝑜

1 = 𝑉 𝑙
1), and their head space intersection is

the same (i.e., ℎ𝑜1 = ℎ𝑛1 ). Otherwise, 𝑉 𝑙
1 must be the changed

interface. Following the argument, 𝑉𝑜
𝑖

= 𝑉𝑛
𝑖

, ℎ𝑜
𝑖

= ℎ𝑛
𝑖

and
𝑙 = 𝑘 . The two reachable paths are the same, and their path
header space is the same. The reachability does not change,
leading to a contradiction. �

B. Algorithm 3

Proof. We first show that if RWP-II uses the complete header
space, the results are correct. The argument is similar to the
proof of Algorithm 2: changed reachability must be related to
changed interfaces.

Without loss of generality, let us focus on a particular node
𝑉𝑘 and its associated edge. Assume the edge has header space
ℎ𝑜
𝑘

in the old graph, and header space ℎ𝑛
𝑘

in the new graph. In
the new graph, we can use the complete header space ℎ𝑛

𝑘
to find

all reachable paths; in the old graph, we can use the complete
header space ℎ𝑜

𝑘
to find all reachable paths; by comparing

them, we can find rechability changes due to changed node 𝑉𝑘 .
Note that we run the algorithm for all changed interfaces, and
the computed reachable pairs may overlap, since a path may
visit several interfaces that change their behavior. Although
there may be some overlapped computation, the results are
correct.

Then we are to prove that, a pair (𝑆, 𝐷) is computed to
have reachability changes by RWP-II via the complete header
space, if and only if the pair (𝑆, 𝐷) is computed by RWP-II
via the differential header space.

There are two cases: (a) all nodes in the old path and the
new path are the same, but the final header space is different;
(b) the old path and the new path are different. The latter case
can also represent the no path case: we can add a virtual edge
between the end node 𝐷 (or the start node 𝑆) and the first node
that does not have the next (or previous) node, and assign the
null header space to it. Figure 16 illustrates these two cases,
where the triangle and square nodes mean changed interface,
the dashed lines mean null intersection, and the red bond lines
means changed edges.

S DVk

(a) (b)

S DVl Vd

S DVk S DVd

Old Graph

New Graph

Vl

Vt

Vt

Fig. 16: Two cases that a pair (𝑆, 𝐷) has differential reacha-
bility in the old graph and the new graph: (a) their paths have
same path edges, but have different header space; (b) their
paths have different edges.

Assume the old path is (𝑆, . . . , 𝑉𝑜
𝑘
, . . . , 𝐷) with length 𝑚,

and the new path is (𝑆, . . . , 𝑉𝑛
𝑘
, . . . , 𝐷) with length 𝑡 (𝑚 may

not be equal to 𝑡). The associated edges of node 𝑉𝑘 has header
space ℎ𝑜

𝑘
and ℎ𝑛

𝑘
. Define 𝛿𝑜

𝑘
= ℎ𝑜

𝑘
− ℎ𝑛

𝑘
, 𝛿𝑛

𝑘
= ℎ𝑛

𝑘
− ℎ𝑜

𝑘
and

ℎ𝑘 = ℎ𝑛
𝑘
∧ ℎ𝑜

𝑘
.

For Case (a), their paths are the same: 𝑉𝑜
𝑖
= 𝑉𝑛

𝑖
. Without

loss of generality, assume only 𝑉𝑘 and its associated edge
change its behavior, and other nodes remain unchanged.

Then we can define

ℎ𝑜 = ℎ𝑜1 ∧ · · · ∧ ℎ
𝑜
𝑘 ∧ · · · ∧ ℎ

𝑜
𝑚,

ℎ𝑛 = ℎ𝑛1 ∧ · · · ∧ ℎ
𝑛
𝑘 ∧ · · · ∧ ℎ

𝑛
𝑚,

and
𝛿𝑜 = ℎ𝑜1 ∧ · · · ∧ 𝛿

𝑜
𝑘 ∧ · · · ∧ ℎ

𝑜
𝑚,

𝛿𝑛 = ℎ𝑛1 ∧ · · · ∧ 𝛿
𝑛
𝑘 ∧ · · · ∧ ℎ

𝑛
𝑚.

Given ℎ𝑜
𝑘
= ℎ𝑘 + 𝛿𝑜𝑘 and ℎ𝑛

𝑘
= ℎ𝑘 + 𝛿𝑛𝑘 , ℎ𝑜 ≠ ℎ𝑛 if and only

if 𝛿𝑜 ≠ 𝛿𝑛. The two algorithms are equivalent.
For Case (b), without loss of generality, assume 𝑉𝑙 is

the first node that diverts the two paths. The two paths are
(𝑆, . . . , 𝑉𝑙 , 𝑉𝑜

𝑙−1, . . . , 𝐷) and (𝑆, . . . , 𝑉𝑙 , 𝑉𝑛
𝑙−1, . . . , 𝐷). Then we

define
ℎ𝑙,𝑜 = ℎ𝑜1 ∧ · · · ∧ ℎ

𝑜
𝑙 ∧ · · · ∧ ℎ

𝑜
𝑚,

ℎ𝑙,𝑛 = ℎ𝑛1 ∧ · · · ∧ ℎ
𝑛
𝑙 ∧ · · · ∧ ℎ

𝑛
𝑡 ,
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and
𝛿𝑙,𝑜 = ℎ𝑜1 ∧ · · · ∧ 𝛿

𝑜
𝑙 ∧ · · · ∧ ℎ

𝑜
𝑚,

𝛿𝑙,𝑛 = ℎ𝑛1 ∧ · · · ∧ 𝛿
𝑛
𝑙 ∧ · · · ∧ ℎ

𝑛
𝑡 ,

Case (b)-I: ℎ𝑙,𝑜, ℎ𝑙,𝑛, 𝛿𝑙,𝑜, 𝛿𝑙,𝑛 are not null. It is trivial that
they are equivalent since their paths are different.

Case (b)-II: ℎ𝑙,𝑜, ℎ𝑙,𝑛, 𝛿𝑙,𝑜, 𝛿𝑙,𝑛 can be null. ℎ𝑙,𝑜, ℎ𝑙,𝑛 cannot
be null at the same time. Otherwise, they do not have reacha-
bility changes. Without loss of generality, assume ℎ𝑙,𝑜 is null
and ℎ𝑙,𝑛 is not null. Since 𝛿𝑜

𝑘
∈ ℎ𝑜

𝑘
, 𝛿𝑙,𝑜 must be null. We

are to prove that the two algorithms both can find reachability
change of (𝑆, 𝐷) (e.g., ℎ𝑙,𝑛 is not null if and only if 𝛿𝑙,𝑛 is
not null).

We take a different approach. Note that our algorithms
apply to all changed nodes. We can find a new node that can
find the reachability change using the two algorithms. For the
new path, it diverts from 𝑉𝑙 , and there must be some edge
(𝑉𝑛

𝑑
, 𝑉𝑛

𝑑+1) in the new path that changes its header space where
𝑉𝑑 appears later than 𝑉𝑙 . Otherwise, there will not be a new
path.

For node 𝑉𝑛
𝑑

, we run the algorithm. Then we have

ℎ𝑑,𝑛 = ℎ𝑛1 ∧ · · · ∧ ℎ
𝑛
𝑙 ∧ · · · ∧ ℎ

𝑛
𝑑 ∧ · · · ∧ ℎ

𝑛
𝑡 ,

and
𝛿𝑑,𝑛 = ℎ𝑛1 ∧ · · · ∧ ℎ

𝑛
𝑙 ∧ · · · ∧ 𝛿

𝑛
𝑑 ∧ · · · ∧ ℎ

𝑛
𝑡 .

For node 𝑉𝑑 , ℎ𝑛
𝑑
= 𝛿𝑛

𝑑
. Thus, ℎ𝑑,𝑛 is not null if and only if

𝛿𝑑,𝑛 is not null. The two algorithms are equivalent. �

APPENDIX C: ALGORITHM COMPLEXITY ANALYSIS

A. Time Complexity

Algorithm 1: Algorithm 1 is different from the conventional
DFS algorithm that visits each node only once. In our scenario,
we do not limit the number of visits. Therefore, our DFS
algorithm can perform poorly in the worst case. Considering
a clique of 𝑁 nodes, there are at most (𝑁-1)! paths, meaning
exponential complexity.

The good news is that the network overlay DCNs follow
a tree structure. Without loss of generality, let us consider a
typical network overlay DCN shown in Figure 17(a) where
there are 𝑁+1 server leafs, two spines, two border leafs and
one firewall (usually there are more than one firewall, but
firewalls always work in standby mode. So, we count one). The
number of edges are (𝑁+1)*2+2*2+2=2𝑁+8. Each device has
one endpoint interface. Under the practical setup, we can prove
that the time complexity is 𝑂 (𝑁) with respect to a network
of 𝑁+6 devices.

The input of our algorithm is the forwarding graph repre-
senting Figure 17(a). Note that, as discussed in Section 4.1,
each switch is further divided into several nodes (include
interface nodes and state nodes) in the graph (e.g., Figure
17(b)). However, they do not affect the algorithm execution
except that the traversal visits more nodes within a switch.
Therefore, we treat each switch as a blackbox, and count the
time complexity based on switches in the following.

Figure 17(c) shows the worst-case execution path of our
DFS algorithm. In general, not all paths will be explored due to

null intersection of header space and early search termination.
In this graph, there are 1+(𝑁+2)*3+2*2+1=3𝑁+12 nodes.
Next, we count the number of visited edges. We first compute
the basic block in dashed square: there are 2𝑁+2 edges. The
basic block is visited five times. Therefore, edges are visited
5*(2𝑁+2)+2*2+2+2=10𝑁+18 times. During each edge visit,
there is a header space (i.e., BDD) intersection computation.
In general, the cost depends on the structure of BDDs involved.
The good news is that operations used in our algorithm (i.e.,
conjunction, disjunction, existential quantification, universal
quantification) can be implemented in polynomial time [18].
Therefore, we add a normalized cost 𝑇 to each edge.

Overall, given a network with 𝑁+6 nodes and 2𝑁+8 edges,
our algorithm runs in (10𝑁+18)*𝑇+(3𝑁+12)=𝑂 (𝑁) time,
polynomial with respect to the input size.

……

N+1 Server Leafs

2 Spines

2 Border Leafs

1 Firewall

……

……

……

(a) Network Model

(c) DFS Execution Model(b) Per-device Model

Fig. 17: (a) A typical network overlay DCN fabric; (b) An
example model inside a device; (c) The DFS exection model.

Algorithm 2: Each waypoint path computation involves
with one forward search and one backward search. Given the
running time of Algorithm 1 is polynomial, the waypoint path
computation time is polynomial too. The comparision time
depends on the number of pairs, which is at most 𝑁2. Assume
that there are 𝐾 (𝐾 ≤ 𝑁) changed interfaces. The overall time
complexity is 𝐾 ∗ (2𝑂 (𝑁) +𝑂 (𝑁2)) = 𝑂 (𝑁3).

Algorithm 3: For each changed interface, the algorithm
performs two rounds of required waypoint path computation.
In addition, it compares all computed reachable pairs (at most
𝑁2) to find reachability changes. Assume that there are 𝐾

(𝐾 ≤ 𝑁) changed interfaces. The overall time complexity is
𝐾 ∗ (2 ∗ 2𝑂 (𝑁) +𝑂 (𝑁2)) = 𝑂 (𝑁3).

B. Space Complexity

Algorithm 1: Similar to the conventional DFS algorithm,
the algorithm uses a stack to store visited nodes. The used
space is at most 𝑂 (𝑁). However, we need to store all reachable
paths, and establish indexes. The storage cost is proportional
to the number of reachable paths, which depends on how the
network is designed. In general, it is hard to characterize. In
our implementation, to reduce the overall memory usage, the
reachable paths are offloaded to hard-disk once computed, and
only the path variable and the reachability table are stored in
memory.

Another memory usage comes from BDD. We need to store
a BDD reference table in memory for fast BDD operations.
Each element in the table refers to a valid BDD variable
(representing a header space). Unfortunately, it is hard to
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characterize the space complexity. In our implementation, we
carefully manage the space used by BDD. In particular, we
manually clean up all temporarily generated BDD variables.
Otherwise, they will occupy the table, and increase the mem-
ory usage.

Algorithm 2: For required waypoint path computation, the
used space is similar to Algorithm 1 except that the algorithm
introduces a new variable npaths. Additional use comes from
two new variables: newReachPairs and newMatrix. For each
changed interface, the used space of these variables should
be negligible. Overall, the space usage is proportional to the
number of changed interfaces.

However, there is indeed a huge overhead related to storing
the all-pair reachability matrix. For a large network with large
number of endpoints (e.g., 𝑁=100K), there would be 10G
endpoint pairs. Even though each pair may use a small space,
the overall used space is large. Similarly, we offload the data
to hard-disk once we compute the reachability results of a pair
in our implementation. In this way, we can reduce the memory
usage, and reuse the same memory to process all pairs.

Algorithm 3: Compared with Algorithm 2, it introduces
a new round of required waypoint path computation and a
new variable opaths. However, it avoids the use of an all-pair
reachability matrix. The overall used space is smaller than
Algorithm 2.

APPENDIX D: DISCUSSION

Model Extension: We believe our model can be extended
to support host overlay DCNs, where vSwitches use OpenFlow
rules for packet forwarding and Iptables for packet filtering.
OpenFlow and Iptables also follow the match-action paradigm,
and match is specified on some new packet fields.We can
extend the symbolic packet fields and use BDD to aggregate
packets as in [42]. However, it may be difficult to support
stateful rules. For example, Iptables use conntrack to main-
tain connection of incoming packets. If so, current network
verifiers are inadaquate, and may need advanced techniques
as in [40], [41].

Network State Consistency: State consistency (between
model and reality) is critical to the accuracy of control-plane
network verifiers, since they require device configurations and
physical topology from the network. Fortunately, almost all
modern network controllers (e.g., Cisco APIC, Huawei Agile-
Controller, OpenDaylight) are equipped with NETCONF [43],
a new network management protocol to manipulate configura-
tions. It can be used to perform consistency check of configu-
rations between devices and their models in the controller. PPV
leverages the commercial controller’s capability to provide
a consistent view of the network state, and targets finding
errors due to users’ faulty policy inputs and controller’s faulty
implementation.

Verification under Network Faults. Network faults (e.g.,
link failures or hardware faults) are quite common in DCNs.
Traditional distributed routing protocols (e.g., OSPF, BGP)
compute new routes automatically, and thus FIB changes,
when network faults happen.

PPV could support these failure scenarios as well, if network
controller can capture the network state (device configurations

and topology) accurately. However, PPV needs to run protocol
simulation again for each failure scenario, and then triggers
an incremental reachability check. As shown in Section 6,
the overall re-computation time (including protocol simulation
time) is around 35s for 200 leafs, which is acceptable for
commercial use. Nonetheless, PPV needs to iterate over all
possible failure scenarios, if we target the k-failure verification
scenario as in control-plane verifiers [19], [29]–[32].

However, for overlay traffic verification in DCNs, the impact
of network failures may be less critical. A typical DCN fabric
usually employs several physical connections to ensure tunnel
endpoint reachability. That is, even if network faults happen
(and the faults do not exceed the network redundancy), the
tunnel endpoints remain connected, and the overlay endpoints’
reachability remain unchanged. Thus, PPV is not designed
to tackle physical network failures. In contrast, PPV mainly
targets finding errors due to users’ faulty policy inputs or
controller’s faulty implementation.


